ENGINEERING TOMORROW

Data Sheet

Water regulating valves Type **WVTS**

Thermostatic operated water valve Opens on rising sensor temperature

Thermostatic operated water valve type WVTS is suitable for controlling the temperature of a flow of water or neutral brine.

WVTS opens on rising sensor temperature and is indirect servo operated thermostatic valve.

It is suitable for controlling temperature in industrial applications by regulating the quantity of cooling water or neutral brine that cools down the process.

The valves are self-acting, i.e. they operate without the supply of auxiliary energy such as electricity or compressed air.

The required temperature is maintained constant without unnecessary use of cooling water in cooling systems.

The operating economy and-efficiency are maximized.

Features:

- · Insensitive to dirt
- Insensitive to water pulsating pressure
- Proven reliable through decades
- · Easy to service
- Built-in pilot filter
- · Long lifetime
- High performance
- Very high capacity
- · Both welding and thread connection flanges

Product specification

Technical data

Table 1: Type and media

Туре	WVTS for neutral media
Operation	Servo-operated

Table 2: Sensor side

Temperature range	0 – 30 °C	25 – 65 °C	50 – 90 °C	
Max. sensor temperature	57 °C	90 °C	125 ℃	

Table 3: Liquid side

Features	Description
Media	Fresh water, neutral brine
Media temperature range	- 25 − 90 °C
Permissible working pressure PB	10 bar
Max. test pressure	16 bar
Opening differential pressure	WVTS 32 – WVTS 40: min. 0.5 bar; max. 4 bar
Opening differential pressure	WVTS 50 – WVTS 100: min. 0.3 bar; max. 4 bar

Valves are supplied with capillary tube gland. Different lengths of capillary tube are available.

If WVTS is required with an opening differential pressure of 1 – 10 bar, the valve servo spring must be replaced. See Ordering.

Material

Parts in contact with the medium.

Figure 1: WVTS 32

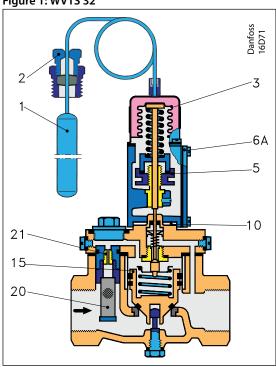
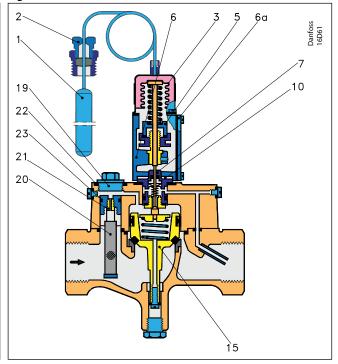
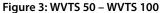
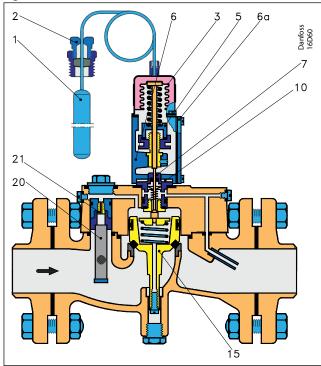





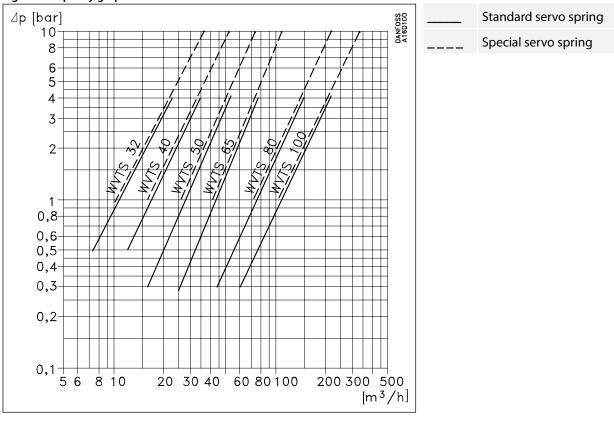
Figure 2: WVTS 40

1.	Sensor
2.	Gland
3.	Bellows element
5.	Regulating nut
6.	Setting element housing
6a.	Cover
7.	Pilot orifice assembly
10.	Insulating washer
15.	Servo piston
20.	Filter cartridge (self-cleaning)

The valve body is made of cast iron with pressed-in bronze seat. The pilot orifice assembly (7) consists of a housing with seat and pilot cone of stainless steel. A filter cartridge (20) is built into the valve cover. Here the equalising orifice is protected by a replaceable filter.

21. Equalising orifice

The bellows in the bellows element (3) are of tin bronze. In designing WVTS, great emphasis was placed on producing a valve with a completely tight seat and no external leakage. The servo piston was therefore fitted with a ring of special rubber that creates an elastic seal against the valve seat.


A specially designed rubber sleeve ensures that the servo piston moves in the cylinder with minimum friction. External valve leakage is prevented at the pilot cone where the spindle is fitted with Teflon cupwashers. Cover gaskets and pilot channel seals are rubber.

The water-tight rubber seal between cover (6a) and housing (6) ensure that moisture cannot enter and freeze up the spindle. The insulating washer (10) prevents heat transmission between valve body and setting element housing.

Capacity

Figure 4: Capacity graph

The capacity curves show the capacity (water quantity in $[m^3/h]$) of the individual valve sizes as a function of pressure drop across the valve.

The capacities are given for approx. 85% valve opening and are obtained with an offset of 4 °C (temperature rise at sensor) on both upper and lower temperature ranges.

Installation

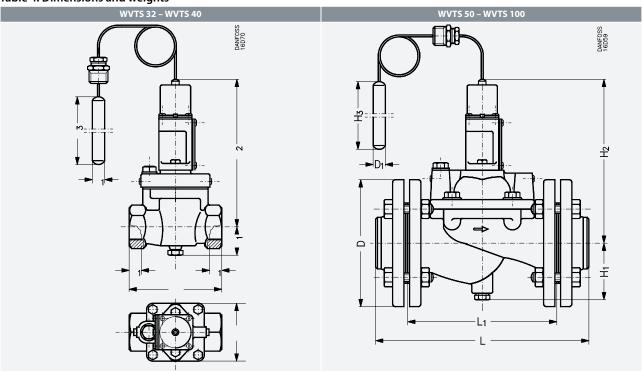
Valve installation:

WVTS is to be fitted in the cooling water inlet with flow in the direction of the arrow and with the bellows element facing upwards. Horizontal mounting is a must.

Sensor / bulb installation:

The bulb is to be fitted where it is required to maintain or control the water temperature.

The bulb can be fitted warmer or colder than the valve body, with no effect on the regulating capacity.


The bulb must be fitted horizontally or with the blank end of the bulb at the lowest level.

The capitals UP and the red line on the bulb must face upwards at horizontal or inclined fitting.

Dimensions [mm] and weights [kg]

Table 4: Dimensions and weights

Table 5: Dimensions and weights

Туре	н,	H ₂	H ₃	L	L,	В	øD	øD ₁	Net weight
WVTS 32	42	196	210	138	20	85	_	18	4
WVTS 40	72	224	210	198	30	100	_	18	7
WVTS 50	78	230	210	315	218	_	165	18	19
WVTS 65	82	246	210	320	224	_	185	18	24
WVTS 80	90	278	210	370	265	_	200	18	34
WVTS 100	100	298	210	430	315	_	220	18	44

Ordering

Table 6: WVTS components

			K _v value [m³/h] ⁽¹⁾	Code no.			
	Valve type	Connection		Valve housing	Flange set ⁽²⁾	Special servo spring for differ- ential pressure range 1 – 10 bar	
	WVTS 32	G 11/4 ⁽³⁾	12.5	016D5032	_	016D1327	
	WVTS 40	G 11/2 ⁽³⁾	21	016D5040	_	016D0575	
	WVTS 50	2 in. weld fl.	32	016D5050 ⁽⁴⁾	027N3050	016D0576	
	WVTS 65	21/2 in. weld fl.	45	016D5065 ⁽⁴⁾	027N3065	016D0577	
	WVTS 80	3 in. weld fl.	80	016D5080 ⁽⁴⁾	027N3080	016D0578	
W - W	WVTS 100	4 in. weld fl.	125	016D5100 ⁽⁴⁾	027N3100	016D0579	

⁽¹⁾ The K_v value is the flow quantity of water in [m³/h] with a pressure drop across the valve of 1 bar, $p = 1000 \text{ kg/m}^3$.

Table 7: WVTS, thermostatic pilot element*

Table 8: Accessories

Description	Code no.
Immersion sensor (sensor pocket)	003N0050
Capillary tube gland ⁽⁵⁾	003N0155

^{(5) 1} capillary tube gland supplied as standard accessory.

Certificates, declarations, and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 9: Certificates, declarations, and approvals

File name	Document type	Document topic	Approvals Authority
003N9613.AB	Manufacturers Declaration	PED/RoHS	Danfoss
003N9614.AA	Manufacturers Declaration	China RoHS	Danfoss
RU Д-DK.БЛ08.В.00191_18	EAC Declaration	EAC	EAC
UA.089.D.00188-17	UA Declaration	TYSK	TYSK

⁽²⁾ Code nos. include 2 flanges.

⁽³⁾ ISO 228-1.

⁽⁴⁾ Code nos. include valve housing, flange gakets, flange bolts and screws for pilot valve.

^{*}The pilot element includes control element and spring housing.

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.